
Follow that Sketch: Lifecycles of Diagrams and
Sketches in Software Development

Jagoda Walny, Jonathan Haber, Marian Dörk, Jonathan Sillito and Sheelagh Carpendale
Department of Computer Science

University of Calgary
Calgary, Alberta

Email: {jkwalny, jmhaber, mdoerk, sillito, sheelagh}@ucalgary.ca

Abstract—Informal visualization in the form of sketching
and diagramming has long been an established practise of
professionals working in the fields of design, architecture, and
engineering. Less is known, however, about the sketching and
diagramming practices of computer scientists and software de-
velopers. Through a series of interviews with computer science re-
searchers who develop software, we probed the purpose, contexts,
and media in which they created and re-created sketches and
diagrams, and the ways in which these informal visualizations
evolved over time. Through our analysis we created visualizations
of the observed sketching and diagramming lifecycles, which can
contribute to a better understanding of the roles of sketching
and diagramming in software development.

I. INTRODUCTION

Visualization through sketching and diagramming plays an
important role in the design process in various domains,
including architecture, design, and engineering [6], [9], [19].
Such visualizations range from informal sketches to more for-
mal diagrams following a standard visual language. They are
used for everything from exploring, formation, and recording
of ideas, to increasing one’s understanding of concepts and
communicating ideas to others. They also have considerable
value within organizations–some engineers and architects save
all sketches made during the course of a project as a record
of all ideas and decisions made [6].

Although there has been much work in understanding the
visualization practises of those designing physical objects
(the aforementioned architects, designers, and engineers), it is
unclear how much of this knowledge is transferable to software
developers, who design digital objects. Software development
differs from these domains in that it involves a combination
of concrete visual elements such as user interfaces and more
abstract elements like the structure of the source code.

In our experience, software developers create and work with
a range of paper-based as well as digital visualizations of
software concepts in their development work. These visualiza-
tions go beyond established visual formalisms such as UML,
wireframes, or storyboards, and do not always use the available
computer-supported tools, such as diagramming software or
auto-generated UML diagrams. We have seen that software
developers also draw their own informal visualizations, on
various analog and digital media, that do not adhere strictly
to these established formalisms.

To better understand how to provide tool support for in-
tegrating these visuals into developers’ workflows we have
conducted a qualitative study about the creation, use and
transformation of diagrams, including transformations between
paper and digital media. Rather than studying specific diagram
types, we sought to gain an understanding of the various
ways in which software developers currently use diagrams to
develop ideas and solve problems. Based on qualitative inter-
views, we followed various sketches through their lifecycles
involving a range of transitions and media types.

For this study, we recruited individuals who use sketches
or diagrams for software design and development. These
participants were not part of teams with formal practices in
place that would influence how diagrams were to be used.
Selecting these participants allowed us to study what types of
sketching workflows software developers and researchers may
tend towards naturally. By following individual sketches and
diagrams through their lifecycles, we contribute a number of
ways in which informal visualizations can have value beyond
their initial creation (including as memory aids and for sharing
with colleagues), and we characterize a range of actual sketch
lifecycles that occurred in software development settings.

II. DIAGRAMS AND SKETCHES: SCOPE AND DEFINITIONS

We found that the visuals used by our study participants
varied on a continuum from very sketchy to more refined
(see Figure 1). One end of this continuum is similar in spirit
to Buxton’s [3] characterization of sketches as: appearing to
be made quickly; disposable; plentiful; following conventions
that distinguish them as sketches; having a fluidity evoking “a
sense of openness and freedom”; containing minimal detail;
being no more refined than the certainty in the creator’s mind;
“suggesting” rather than “telling”; and being intentionally
ambiguous. The other end is characterized by formal draw-
ings with crisp lines, often following some predefined visual
language or conventions.

Informal Formal
sketchy quality rigid quality

DiagramsSketches

Fig. 1. Sketches and diagrams can be situated along a formality spectrum
according to their sketchy vs rigid nature.



We were interested in both sketches and diagrams as visual
artifacts. The visual artifacts we saw can be arranged on
our spectrum from informal to formal representations (see
Figure 1). Throughout this paper, we call those visual ar-
tifacts towards the informal end of the spectrum sketches,
and those visual artifacts towards the formal end of the
spectrum diagrams. Some ambiguity occurs in the middle
of the spectrum, where formal diagram elements are mixed
with sketchy elements. We saw both sketches and diagrams
that were created ad-hoc (rather than strictly following some
software visualization convention such as UML); we call these
informal software visualizations.

To better understand how software developers use sketches
and diagrams in their work, we focus on two key aspects of
their informal visualization practices: the contexts and tools
used in the creation and use of sketches and diagrams (the
how); and the reasons behind the evolution of these visual
artifacts (the why). In the remainder of this paper we describe
work related to the use and value of sketches in various
domains, explain our study methodology, then present how
sketches and diagrams used in software development transition
through their lifecycles in terms of purpose, medium, and
context. Before concluding the paper, we discuss the variety
and uses of informal visualizations we encountered.

III. RELATED WORK

Informal visualizations such as sketches have long been
used to share, clarify, communicate, and store thoughts and
ideas [22]. Due to their ability to support thought processes
and idea development [17], [20], they have been identified as
particularly valuable for creative design tasks [7], [11], [14].
Research in this area has been especially active across the
fields of design (particularly architectural design) [8], [16] and
engineering [6].

The informality of sketches is what makes them so valu-
able: the idea generation process is supported by their in-
herent ambiguities and simplifications. Tversky [21] notes
that experienced designers have strategies for leveraging the
ambiguity of their sketches to generate new ideas in a pro-
cess called constructive perception. In software engineering,
many have recognized that rough, low-fidelity, or “sketchy”
prototypes [14], [15], [23] are more effective at generating
ideas and encouraging feedback in the early stages of software
design than their polished counterparts. In our research we
are interested in the transformations that these early, informal
sketches undergo in a software development setting.

Interest in digital sketching and diagramming tools dates
back to 1963 with Sutherland’s Sketchpad [18] and remains
an active area of research [12]. Despite this interest and recent
advances in pen- and touch-enabled computing, many still
prefer paper for their sketches [13]. We argue that this less
than complete adoption of software tools may be because in
order to fully support digital sketching, these tools must take
into account the entire lifecycle of these sketches.

Making a sketch is not an isolated activity; a series of
sketches is like a conversation in which the sketch is just

as instrumental as the sketcher in pushing an idea forward
(what Goldschmidt [10] calls the “backtalk” of sketches). We
extend this idea of a sketch conversation and demonstrate that
a sketch has a lifecycle: it starts out as an idea and may end up
as far as having a formal, polished representation. This idea
was inspired in part by Cherubini et al.’s observation [4] that
some sketches and diagrams in a software development setting
were reiterated - revisited over and over again.

In studying sketch lifecycles we inevitably need to consider
transitions between different media. There is some interest in
integrating sketches across various media, for example, Bran-
ham et al.’s Reboard system [2] captures whiteboard drawings
and makes them available for reuse across devices, or Brandl
et al.’s work on integrating paper-based and digital interfaces
using paper enhanced with Anoto patterns [1]. Our study is
intended to expand our understanding of such transitions by
providing a snapshot of how and why a software developer’s
sketch might transform across media and contexts.

IV. METHODOLOGY

Our study involved semi-structured interviews with eight
participants who explained the lifecycles of one or two
sketches and diagrams as part of their software development.

Participants. We recruited software developers who used
visualizations such as sketches or diagrams related to their
software development practice. We recruited participants via
a mailing list reaching graduate students and professors in a
computer science department at a university. Our participants
included six graduate students, one university professor, and
one postdoctoral fellow. They were not part of teams that
had formal practices dictating how sketches and diagrams
were to be used; they all had relative freedom to design their
own workflows. While participants made diagrams as and
when they wished, they were sometimes influenced by their
supervisor’s wishes or advice. This allowed us to see the types
of workflows our participants tend towards naturally.

Study Design. We conducted our study in two phases. In
the first phase, we interviewed five participants about the
lifecycles of one or two of their sketches or diagrams that
related to software development. These five interviews were
semi-structured and lasted approximately one hour each. After
initial open-coding analysis [5] of the data collected in phase
one, we conducted a second round of interviews with four
additional participants lasting approximately thirty to forty-
five minutes, and were structured similarly to the interviews
in phase one but with an increased focus on transitions in
sketching practices. We discarded one interview due to the
participant not being involved in any software development.

Semi-Structured Interviews. At the beginning of each in-
terview the participants filled out a questionnaire to establish
some background information about the software development
project, their role in it, and their previous experience with
sketching or diagramming. During the interviews, we asked
questions about the context in which the sketch was created,
characteristics of previous versions, the purpose of creating
the sketch, the roles of people involved in creating or viewing



the sketch, the tools and techniques used, and their personal
experience during the creation of sketches. In the interviews of
the second phase, we specifically asked participants to show
us an example of a sketch they actively revisited. We asked
questions about this sketch and their typical behaviours.

Analysis. All interviews were videotaped to record sketches
in context of participants’ gestures and statements during the
interview. We transcribed the audio as well as the relevant
diagram characteristics. After phase one, we performed an
open coding of the transcript data and then determined what
interesting observations emerged from the data in the form of
broad categories. From this analysis it emerged that, in order to
study the lifecycles of these sketches and diagrams, we would
need to focus on transitions between sketch stages and media.

We then conducted phase two of our interviews with an
increased focus on these transitions. We analyzed phase two
data and re-analyzed phase one data in light of transitions.
Based on this open coding and our observations of the video
transcripts we created diagrams depicting the lifecycles of the
sketches and diagrams revealed by the participants.

V. WHAT IS A TRANSITION?

From our analysis it emerged that the clearest way to
describe the visualization lifecycles we saw was through the
lens of the transitions they passed through.

We define a transition as a passage of a visualization from
one state to another, where a state describes medium, context
(personal or group), actual form the diagram takes (thus an
alteration, annotation, or re-creation would all be a change
of state), or a change in use status (actively being used,
not in use). This definition emerged both from answers from
our participants regarding the contexts in which they created
sketches or diagrams and from our analysis of the data.

Each transition can be grouped into one of five categories:
• Creation: A special-case transition in which a visualiza-

tion goes from existing as an idea in the developer’s mind
to having an actual form on an analog or digital medium.

• Iteration: This transition involves a change in the form
of the diagram, either through redrawing, annotating, or
summarizing of previous diagrams.

• Copying: This transition involves making a direct repro-
duction of the diagram through such means as copying,
scanning, or taking a picture.

• Archival: This transition involves a change in status of the
diagram to inactive. The diagram is stored somewhere,
but not actively accessed.

• Discarding: This transition involves discarding the dia-
gram, usually deliberately.

Together, these transitions form a sketch and diagram visu-
alization lifecycle. In the next section, we describe the range
of lifecycles we observed through the lens of these transitions.

VI. DIAGRAMS/SKETCHING PRACTICES

We use a series of lifecycle diagrams to show both the
variation and the commonalities between the sketches and
diagrams we followed. The sketching and diagramming

practices from our analysis are represented in Figures 3–5.
The horizontal axis is a non-linear representation of time,
while the vertical axis indicates the relative number of people
involved in the creation, manipulation, or discussion around
the media object. The lowest position along the vertical axis
indicates single-person use, and higher positions indicate
more people are exposed to the sketch. Icons represent the
type of medium used; icon labels indicate the action taken
with the medium; arrows represent transitions between media
types and/or states of the diagram or sketch; arrow labels
represent reasons for transition; and varying colours and
arrow types indicate different types of transitions. The media
and transition types are listed in Figure 2.

Iteration

Discarding

Archival

Pile

Computer

Trash

Presentation

Thesis/
Paper

CameraNotebook

Sheet Whiteboard

Creation

Tablet Wall

Copying

Fig. 2. Media and transition types encountered in interviews; this is a legend
for Figures 3 through 5.

Each participant description characterizes the participant
regarding their sketching practice and describes a sketch work-
flow (represented in the diagrams) along multiple transitions
ranging from creation, iteration, and copying to archiving
and discarding. We grouped participants into three classes of
sketching practices: those with a thoroughly considered work-
flow (Section VI-A), those with a freeform workflow (Section
VI-B), and those with low sketching activity (Section VI-C).

A. Participants with thoroughly considered workflows

Participants in this category put a high amount of effort
into thinking about and adjusting their workflow to support
sketching and diagramming.

Participant #4 (P4), unlike any other participant, took great
care to set up a system in which all of his sketches and
diagrams would end up in digital form in an efficient manner.
He was the only participant we interviewed who regularly and
deliberately used a tablet PC to create sketches and diagrams.
(P1 and P3 both owned tablet PCs but felt that they were too
cumbersome to use as compared to paper or whiteboards.)

P4 was aware of the limitations of tablet PCs but was
determined to create a workflow that worked for him. He
scanned the most valued of his old sketchbooks into a digital
archive and carefully chose a model of tablet PC with a weight
and responsiveness he was comfortable with. He also care-
fully chose his diagramming software, a vector-based drawing
application that specifically supports tablet PCs, allows the
creation of custom templates, and exports to vector (PDF) and
JPEG formats. Because P4 spent so much time optimizing his
diagramming system, he was able to explain to us in detail his
typical diagram lifecycle (see Figure 3).



brainsto
rm

draw

Time

im
prove ideas

P
er

so
n

G
ro

up

print, categorize

show

upload to wiki

archiveexplore ideas

draw

discard
digital version 

exists

refine ideas

with templates
redraw

or rearrange

gr
ou

p 
ref

ere
nc

e

share in meeting

make searchable

see in context project ends
for quick
reference

visible archive

#4

P
er

so
n

G
ro

up

explore ideas

draw

Time

show

refine redraw

summarize

show

pr
es

en
t p

lan

future reference

archive

explore ideas

feedback
improve ideas

im
plicit save

#1

brainstorm,
plan

draw

Time

allow erase

G
ro

up

not enough 

space

mutual agreement

upload to wiki

take photo
for g

roup

ref
ere

nc
e

#3

Fig. 3. Depictions of diagram lifecycles by participants with thoroughly considered workflows (Participants #4, #1, and #3). Participant #4’s lifecycle
showcases extensive, deliberate use of digital media; Participant #1’s shows iterative refining of prototype sketches and diagrams for a user interface; and
Participant #3’s depicts the cycle of a diagram-turned-contract.

Creation. P4 engages in two types of brainstorming: indi-
vidual and in groups. When exploring ideas alone, he draws
directly on his tablet PC, using his chosen drawing program.
He does this also in public (e.g., on a bus), but admits to
feeling self-conscious using a computer instead of paper out in
public. When brainstorming in groups, P4 usually uses paper,
often large sheets everyone can draw on. In both cases, P4
often references previous sketches when exploring new ideas.

Iteration. After the creation stage, P4 translates ideas
captured on paper to his tablet PC. Refining his ideas, he
rearranges or redraws diagrams on his tablet PC. He cites the
ability to make templates and rearrange elements as the biggest
advantage of the tablet PC over paper.

Copying. To categorize his diagrams and see them in
context, P4 prints out his diagrams (in colour) and places them
in groups on the wall in his workspace organized by project.
We can call this a “visible archive” of diagrams. P4 references
this archive when exploring new ideas, beginning the diagram
lifecycle again.

Archiving. Once the digital diagrams have matured through
iteration, several things happen: P4 uploads the diagrams to
a wiki accessible to his research group; the diagrams are
saved to a digital tablet device for sharing during meetings;
additionally, they are uploaded to a searchable online archive
that supports optical character recognition making it easy to
find specific diagrams or browse through old diagrams.

Discarding. P4 actively discards paper versions of diagrams
that have digital equivalents, except for those he drew in
sketchbooks before setting up this digital workflow. The
sketches that were made as part of a group brainstorming are

discarded as soon as digital versions exist. When a project
ends, he discards the corresponding printed diagrams on the
wall because he has no further need to see them in context.

Participant #1 (P1) was designing a user interface for a
system used in a professional setting. This was a research
project but, as in business projects, she had to satisfy the users
and the decision-makers. Her sketching workflow was not as
carefully considered as P4’s, but she was reflective about it due
to the encouragement from her supervisor to include sketching
in her work (see Figure 3). She owned a tablet PC, but mainly
used her sketchbook for sketching initial ideas.

Creation. P1 would sketch ideas in her free time, including
small pockets of time such as when she was waiting to pick
up her kids from school. Her main medium for brainstorming
was a sketchbook; a tablet PC was too cumbersome and took
too long to boot up.

Iteration. P1 would share selected sketches with her target
user base directly from the sketchbook. As the ideas matured,
she summarized them in her notebook (drawing a “summary
sketch”), redrew them in a digital format and placed them
in a presentation, which she gave to a group of decision
makers. While she would share formal diagrams as part of
presentations to decision makers, she would show more casual
sketches to a smaller group of the user base earlier in the
process.

Copying. P1 did not mention any scanning or photographing
of her sketches, though she did reproduce her diagrams into
PowerPoint when necessary for a presentation.

Archiving. P1’s main way of archiving sketches and dia-
grams was her sketchbook, in particular the summary sketches.



Discarding. P1 did not discard her sketchbooks since they
served as possible future reference sources. She also did not
delete digital sketches that would be implicitly saved.

Participant #3 (P3) has a supervisory role and does not
actually create software himself, but his students do, following
a method based on agile software development methodology.
The diagrams he uses are drawn by and/or with his students
during group and project meetings (see Figure 3).

Creation. P3 and his students would brainstorm and plan
by drawing sketches and diagrams on a whiteboard.

Iteration. P3 did not modify the sketches his students drew;
at most he would reference them.

Copying. If a sketch or diagram represented a mutual
agreement of tasks to be completed, P3 or his student took
a photo and uploaded it to a wiki that all of P3’s students had
access to. This was considered to be evidence of a “contract”
between student and supervisor.

Archiving. Sketches or diagrams were left on the whiteboard
until the space was needed for a different use. Photos were
archived on a wiki accessible to the entire group.

Discarding. P3 considers whiteboard sketches to be transient
in that they could be erased any time.

B. Participants with a freeform workflow

Participants in this category sketched often and had their
own naturally emerging workflows for dealing with sketches
and diagrams, which they adapted in collaborative settings
when necessary.

Participant #5 (P5) programs graphical computer software,
so her work is very visually oriented. She described to us the
lifecycle of a diagram used for debugging (see Figure 4).

Creation. Initially, P5 was debugging her software using a
debugger, but could not figure out a particular problem. She
began sketching out the problem on the most readily available
drawing surface at the time - a loose piece of paper from a
stack of loose paper at her desk that she keeps for this purpose.

Iteration. When the paper sketch did not solve P5’s problem
she felt she needed to “clear her head” and “change her
environment”, so she moved to a communal whiteboard and
began to sketch out her problem. Here, she discovered that
she needed to account for several cases, and was missing one.
Next she moved back to her desk and began to plan out how to
implement the missing case on a piece of paper. The piece of
paper stayed in a pile on her desk serving as a memory aid, so
that when she switched tasks away from the implementation
and then back, she could go back to the diagram and remember
the state of mind she was in when she drew it.

Copying. P5 later decided that the drawing on the white-
board did quite a good job of explaining the problem she was
working on and the solutions, so she took a photo of it, which
she then transferred to her hard drive.

At a later date, she planned to reference this photo while
creating a formal, explanatory diagram that she would publish
while documenting her software in a thesis or conference
publication. She acknowledged that the final diagram might

have slightly different elements, but was confident that the
whiteboard sketch provided a good basis.

Archiving. The piece of paper stayed in a pile on P5’s desk
serving as an easily accessible memory aid.

Discarding. She said she would discard it when it no longer
held any value for her as a memory aid, and was instead simply
cluttering up her desk.

Participant #6 (P6), like P5, also programmed graphical
computer software (see Figure 4). He showed us two different
types of typical (for him) sketches. The first was a type of
drawing he often used for debugging; the second, a typical
diagram used to explain a concept to someone else.

Creation. When using a debugger, at times P6 finds that the
numbers shown by the debugger (coordinates) provide little
meaning without a visual reference. So he draws them on
a piece of paper along with a visual representation of the
coordinates to help solve the problems.

The second diagram type, the explanation sketch, is drawn
in a meeting with someone else and is intended to be a
transient diagram - used only for explanation and then erased.

Iteration. A debugging diagram is specific to a particular
part of P6’s software, so it has value to him when he returns to
work on that part of this source code. He saves these diagrams
in a notebook.

The explanation sketch turned out to be a type of diagram he
drew often, so P6 used it to create a more generalized diagram
that explained the underlying concept. He did this in digital
format, and kept this generalized diagram for presentations or
publications.

Copying. When debugging his code P6 occasionally needs
a diagram that includes a screenshot of his software. In these
cases he creates the diagram digitally rather than on paper.

For P6, an explanation sketch at times turns out to represent
a particularly useful way of organizing or explaining the
concept, in which case he takes a photo of the diagram and
later creates a refined, formalized version of it for sharing in
presentations or publications.

Archiving. The debugging diagrams have value to P6 when
he returns to work on that part of this source code, so he saves
these diagrams in a notebook. The explanation sketches, on the
other hand, would only be saved indefinitely on his hard drive
if they stand out in terms of clarity of explanation.

Discarding. The explanation sketches that are “rough or
simple” are used only once and then get discarded or erased,
unless determined to be useful in some way for the future.

Participant #2 (P2) is a project lead on a research project,
working with one developer, and has a supervisor. P2 has an
art background and draws digitally extremely infrequently. She
states she would have drawn diagrams by hand in her thesis
if that were possible. Her workflow is very freeform–sketches
are drawn on loose paper and archived in piles. She showed
us two visual artifacts: a network architecture diagram and a
user interface diagram.

Creation. The first artifact (represented in Fig. 4) was a
network architecture diagram. In order to plan out how several



#5

debug

draw take photoredraw refine

remember formalize

write

publish

implement
draw

Time

discard revisitarchive
no value

change environment

rememberfuture reference

P
er

so
n

G
ro

up

debug

draw

Time

redraw

generalize

P
er

so
n

G
ro

up

tuck into
future

reference
explain work

present

a) debugging

#6

explain concept
in meeting

draw

TimeP
er

so
n

G
ro

up

useful for future sharing

take photo redraw keep on drive

implicit saverefine for sharing

erase
rough,

not valuable

b) explanation

#6

plan

draw

Time

annotate

future referencewith newer version
avoid clutter

feedback
redraw

summarize

improve
archive

a) network architecture

P
er

so
n

G
ro

up

#2

brainstorm

draw

Time

improve ideas
copy

archive

b) user interface

P
er

so
n

G
ro

up

redraw

prepare for sharing

scan
share over distance

refer to

keep version
for self

annotate

fee
dbac

k
future reference,

refinement

#2

Fig. 4. Depiction of diagram lifecycles for participants with a freeform workflow (Participants #5, #6, and #2). Participant #5’s lifecycle shows a debugging
process; Participant #6 has two lifecycles, one for debugging (a), and one for explanation of a concept (b); Participant #2 also has two lifecycles, one
representing her network sketches (a) and one representing her interface sketches (b).

servers would communicate with each other, she drew an
initial sketch on a piece of paper.

The interface diagram was created on paper as she and a
colleague brainstormed different interface ideas.

Iteration. P2 showed the network architecture sketch to a
colleague to receive feedback and annotated the sketch with
his comments. Once her vision of the network architecture
had matured, she drew a diagram that summarized her plan,
similar to P1’s “summary sketches”. She kept this summary
diagram in a pile of loose papers connected to the project and
referred to it when necessary.

For the interface sketch, she worked with her colleague
to iteratively improve the ideas, drawing new sketches when
necessary.

Copying. Once satisfied about the number of ideas, they
needed to share them with their supervisor, who was away at
the time. This was done by scanning and emailing the paper
prototypes to their supervisor.

P2 wanted her collaborator to have the original prototype
sketches so that he could reference the correct colours; P2 still
wanted a copy for herself, however, so she made photocopies
for her own use. She brought these photocopies to the meeting
with her supervisor and annotated them with feedback from
the meeting.

Archiving. P2 kept several iterations of the interface
diagram, particularly the photocopies she had annotated at
her meeting with her supervisor. She kept these photocopies
with her other loose papers and referenced and refined them
as necessary.

Discarding. P2 discarded previous versions of the network
diagram to avoid clutter from material that was no longer up
to date.

C. Participants with low sketching activity

Participants in this category used diagrams more so than
sketches and did not place a high importance on thinking about
their sketching workflow.



debug

generate

Time

print archive
future reference

prepare for sharing

show annotate

feedback
remember

P
er

so
n

G
ro

up #7

Time

P
er

so
n

G
ro

up

discard
hates paper, 

not searchable tex

archive

implicit save

future reference

publishpresent

increase consistency

brai
nsto

rm
,

think

second ideas

for saving redraw

redraw

ppt

draw

sh
are

/pub
lish

pu
bli

sh

#8

Fig. 5. Depictions of diagram lifecycles from participants with low sketching activity (Participants #8 and #7). Like Participant #4’s workflow, Participant
#8’s workflow is centred around digital media. Participant #7’s lifecycle shows an automatically generated diagram turned into an annotated printout.

Participant #8 (P8), who was creating system architectures
for security, used paper but expressed a strong dislike for it. In
contrast to P4, who actually liked paper but reduced its use in
favour of the affordances of digital diagrams, P8 continued to
use paper, but immediately created digital versions of valuable
sketches and discarded the paper. He disliked that paper was
not searchable, and he also disliked the clutter it created. P8
walked us through several sample diagrams (see Figure 5).

Creation. P8 still used paper for the majority of his brain-
storming. In some cases he would insert mature ideas directly
into slideshow software with basic diagramming tools. It
was quite easy for him to create diagrams in the slideshow
software, so he would put both personal ideas and diagrams
intended for presentation in it.

Iteration. If a diagram was important enough to save it, P8
would create a digital version of it as soon as possible–either
in the slideshow program or in the typesetting environment
LaTeX. In some cases for formal presentation he kept the
slideshow diagrams; in other cases he moved them into LaTeX.
The slideshow program allowed him to “move boxes and lines
around”, but LaTeX, which generates a diagram from a plain
text representation, let him organize diagrammatic elements
conceptually but with less flexibility in layout.

P8 had two main reasons for using LaTeX diagrams, which
took several hours to create: LaTeX had superior support for
mathematical equations, and it was the format in which he
created his publications, so making his diagrams in it provided
a visual consistency he sought.

Copying. P8 did not take photos, print, or scan, but his
LaTeX diagrams were fairly faithful representations of the
original diagrams.

Archiving. P8, like all of our participants, did not explicitly
delete digital files. Digital diagrams tend to be implicitly
archived indefinitely.

Discarding. Pieces of paper with sketches were immediately
discarded after they had been redrawn digitally.

Participant #7 (P7) is a researcher who was working
on a network protocol when he told us about his sketching
practices. His goal was to create a protocol that optimized
particular parameters. In contrast to most participants’ sketch-

ing practices moving from physical to digital media, the sketch
lifecycle of P7 starts out with a digital diagram transitioning
to annotated printouts.

Creation. In order to judge the performance of his protocol,
P7 set up an automated method of generating graphs from log
files produced by his software.

Copying. He prints out these graphs, staples them together,
and together with his supervisor, annotates the diagrams with
various comments and ideas for improvement.

Iteration. The process of generating these graphs is stream-
lined and he can re-generate any graph when needed. However,
he has not yet had to re-generate any of the diagrams, and
he frequently makes use of the printed versions because they
contain many valuable annotations.

Archiving. He stores each stapled group of graphs in a neat
pile on his desk (newest diagrams on top), which he can
reference as he works on his protocol. The pile on his desk
contained all of the graphs he had generated throughout the
whole project.

Discarding. Up to the point of the interview, P7 had not
discarded any diagrams.

VII. DISCUSSION

As we followed our participants’ sketches and diagrams
through their lifecycles, we saw that these lifecycles are quite
complex. Initial sketches and diagrams undergo a variety of
transitions. Our participants created and worked with sketches
and diagrams for a wide range of purposes related to software
development: generating, refining, and summarizing design
ideas, evaluating software performance, debugging and for
explanation and mutual agreement with colleagues. These
visuals were created and recreated on various media including
paper, notebooks, printers, cameras, photocopiers, Tablet PCs,
PCs, and using auto-generators. Their contexts ranged from
informal to formal, individual to group. The visuals served
many uses including ideation, communication, and distillation.

Ideation. Sketches are frequently discussed as great vehicles
for an ideation process [7], [9], [12], [20], and generating
many sketches is a recommended technique for finding good
ideas [3]. We found that while some sketches were only tran-
sient (such as those created on shared whiteboards and never



saved), many sketches were saved, iterated upon, reused and
transformed. These sketches were valued as idea generators
not only during creation, but also later in the process. For
instance, it was noted that re-looking at an earlier sketch could
trigger new and different ideas.

For most of our participants, the transitions within the
ideation process (mainly creation and iteration transitions)
happened almost exclusively on analog media. These transi-
tions are a throwback to Goldschmidt’s [10] idea of a sketch as
a conversation, and are where constructive perception [20] is
likely to occur due to the sketches’ informality and ambiguity.
It was in these stages that our participants had the most vari-
ation in, and were most passionate about, the tools they used.

Communication. Much of the sketch lifecycle was in-
fluenced by changing communication needs. People redrew
sketches to clarify aspects for others. They annotated each
others’ sketches to record agreements and variations in ideas
that arose during discussions. Sketches were transitioned into
different media to better serve given communication needs.

Distillation. Transitions that were not through a direct
copying process such as photos, scans and prints, were used to
both refine and clarify ideas and to open up discussions about
selected aspects again in more formal sharing settings.

Each transition type was associated with different benefits.
Creation translated internal ideas to external visuals. Iteration
transitions, which made up the bulk of the lifecycles we saw,
were usually for idea generation, feedback, or for formalizing.
Copy transitions tended to be for keeping analog visuals as a
memory aid or for switching to a shareable medium. Archive
transitions tended to be implicit (a file left on a hard drive)
unless deliberately archiving for sharing with a group. Discard
transitions were more frequently analog and tended to be
explicit, usually to reduce clutter.

While this study has revealed a great deal of variety in
sketch and diagram lifecycles, the full extent of the variety is
not yet known. More variations may emerge in different soft-
ware development teams as people adapt to various workflow
constraints. However, it is clear that the informal visuals used
in software development have value beyond initial creation as
they are modified, copied, shared, and archived.

Needed are visualization tools that take into account that
developers have these varied sketch lifecycles. Such visualiza-
tions might flexibly support iteration transitions and archiving
of particularly valued visualization instances if they are meant
for idea generation purposes or debugging; transition between
various media and contexts if they need to be shared or
formalized; or transition through various levels of formality
if they are meant to be used in several different contexts.

VIII. CONCLUSION

We have provided a snapshot of the lifecycles of sketches
used by eight people during their software development pro-
cesses. Although this is just a small sample of software
developers, the complexity and individuality in these lifecy-
cles has considerably expanded our understanding of these
processes. The richness of our findings can be seen in the

subtle differences and unique evolutions of the sketching and
diagrammatic life cycles observed.

Informal visuals clearly factor into the workflows of
software developers, and some of these go on to have value
within a larger group or formal setting. Effective tool support
for integrating sketching into the software development
workflow, regardless of medium, must consider not just
transitions across media but transitions across purpose and
context to support a broad range of work styles.

REFERENCES

[1] P. Brandl, M. Haller, J. Oberngruber, and C. Schafleitner. Bridging the
gap between real printouts and digital whiteboard. In Proc. of AVI, pages
31–38. ACM, 2008.

[2] S. Branham, G. Golovchinsky, S. Carter, and J. T. Biehl. Let’s go
from the whiteboard: Supporting transitions in work through whiteboard
capture and reuse. In Proc. of SIGCHI, pages 75–84. ACM, 2010.

[3] B. Buxton. Sketching user experiences: Getting the design right and the
right design. Morgan Kaufmann, 2007.

[4] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s go to the
whiteboard: How and why software developers use drawings. In Proc.
of SIGCHI, page 566. ACM, 2007.

[5] J. Corbin and A. Strauss. Basics of Qualitative Research. SAGE
Publications, 3rd edition, 2008.

[6] E. S. Ferguson. Engineering and the Mind’s Eye. The MIT Press, 1994.
[7] V. Goel. Sketches of thought. The MIT Press, 1995.
[8] G. Goldschmidt. The dialectics of sketching. Creativity research journal,

4(2):123–143, 1991.
[9] G. Goldschmidt. On visual design thinking: The vis kids of architecture.

Design studies, 15(2):158–174, 1994.
[10] G. Goldschmidt. The backtalk of self-generated sketches. Design Issues,

19(1):72–88, 2003.
[11] M. D. Gross and E. Y. L. Do. Ambiguous intentions: A paper-like

interface for creative design. In Proc. of UIST, pages 183–192. ACM,
1996.

[12] M. Haller, P. Brandl, D. Leithinger, J. Leitner, T. Seifried, and
M. Billinghurst. Shared design space: Sketching ideas using digital pens
and a large augmented tabletop setup. Advances in Artificial Reality and
Tele-Existence, pages 185–196, 2006.

[13] G. Johnson, M. D. Gross, J. Hong, and E. Yi-Luen Do. Computational
support for sketching in design: A review. Foundations and Trends in
Human-Computer Interaction, 2(1):1–93, 2009.

[14] J. A. Landay. Interactive Sketching for the Early Stages of User Interface
Design. PhD thesis, Pittsburgh, PA.

[15] M. Rettig. Prototyping for tiny fingers. Commun. ACM, 37:21–27, 4
1994.

[16] P. A. Rodgers, G. Green, and A. McGown. Using concept sketches to
track design progress. Design Studies, 21(5):451–464, 2000.

[17] M. Schütze, P. Sachse, and A. Römer. Support value of sketching in the
design process. Research in Engineering Design, 14(2):89–97, 2003.

[18] I. E. Sutherland. Sketchpad: A man-machine graphical communication
system. In Proc. of AFIPS Spring Joint Comp. Conf, volume 23, pages
329–346. Citeseer, 1963.

[19] M. Suwa and B. Tversky. What do architects and students perceive in
their design sketches? A protocol analysis. Design Studies, 18(4):385–
403, 1997.

[20] B. Tversky. What do sketches say about thinking? In 2002 AAAI Spring
Symposium, Sketch Understanding Workshop, Stanford University, AAAI
Technical Report SS-02-08, 2002.

[21] B. Tversky, M. Suwa, M. Agrawala, J. Heiser, C. Stolte, P. Hanrahan,
D. Phan, J. Klingner, M. P. Daniel, and P. Lee. Sketches for design and
design of sketches. Human Behaviour in Design: Individuals, Teams,
Tools, page 79, 2003.

[22] D. G. Ullman, S. Wood, and D. Craig. The importance of drawing in
the mechanical design process. Computers & graphics, 14(2):263–274,
1990.

[23] Y. Y. Wong. Rough and ready prototypes: Lessons from graphic design.
In Posters and short talks of SIGCHI, page 84. ACM, 1992.


